Richard Seewald
Centro de Investigación de Audiología Infantil
Centro Nacional de Audiología. University of Western Ontario
London, Canadá

Protocolo de adaptación de audífonos en niños de 3 a 18 meses: adaptación y verificación

Hearing instrument fitting protocol in infants from 3 to 18 months of age: fitting and verification procedures
Hearing Instrument Fitting Protocol in Infants 3 to 18 Months of Age:

Fitting and Verification Considerations

Richard Seewald, Ph.D.
Professor and Canada Research Chair in Childhood Hearing

National Centre for Audiology
The University of Western Ontario
London Ontario Canada
The Fitting Process

ASSESSMENT

SELECTION AND FITTING

VERIFICATION

VALIDATION
Presentation Outline

- Preselection Considerations
- Electroacoustic Selection and Fitting
Pediatric Hearing Instrument
Selection and Fitting

• Preselection Considerations
Hearing instrument features

Physical characteristics:

- BTE casing
- Pediatric sized earhook
- Filter in earhook that provides a minimum of 6 dB of attenuation at 1000 Hz.
- Tamper-proof battery doors
- A system for locking the volume control
- Direct audio input
Pediatric Hearing Instrument
Selection and Fitting

• Electroacoustic Selection and Fitting
The Electroacoustic-Based Approach to Fitting (from Erber 1973)

- Child’s Level of Discomfort
- Child’s Thresholds
- Conversational Speech
- Normal Hearing
In the real-ear

Connect coupler and instrument to coupler microphone. Select one of REAR 1 through REAR 4.
From real-ear to coupler

Real-ear → Acoustic Transform → Coupler
How are RECDs used??
In Hearing Instrument Fitting

To develop 2cc coupler performance targets

- HEARING AID PERFORMANCE
- REAL-EAR
- CUSTOMIZED TRANSFORM
- INFANT’S RECD
- MICROPHONE LOCATION EFFECTS

= HEARING AID PERFORMANCE
= 2cc COUPLER
Specification Window

Circuit Type:
- Linear
- WDRC (Fixed CR)
- WDRC (Variable CR)

Frequency (Hz)
- 250
- 500
- 750
- 1000
- 1500
- 2000
- 3000
- 4000
- 6000

HA2 Coupler
- SSPL
 - 94
 - 100
 - 102
 - 104
 - 111
 - 109
 - 107
 - 102
 - 103

Res. Gain
- 10

Full-on Gain
- 16
- 20
- 25
- 32
- 45
- 43
- 44
- 44
- 42

User Gain (Speech Input)
- 6
- 10
- 15
- 22
- 35
- 33
- 34
- 34
- 32

Compression Ratio
- 1.0
How well does this work???

Validation Studies
Preferred Listening Levels of Children who use Hearing Aids: Comparison to Prescriptive Targets

Scollie, Seewald, Moodie and Dekok
JAAA 2000
Scollie et al. (2000)

- N = 18 Mean age = 10 years
 Mild to Profound SN hearing loss

- The subjects listened to average conversational speech and adjusted their VC to the level they preferred.

- The subjects preferred VC setting, for an average speech input, was compared to DSL prescribed settings.
Preferred Listening Levels in Children

PLL / DSL Comparison

- Preferred Listening Level (dB)
- Recommended Listening Level (dB)

Graph showing the comparison between Preferred Listening Levels and Recommended Listening Levels for children, with DSL marked on the graph.
Preferred Listening Levels in Children

PLL / DSL Comparison

- On average, the children’s preferred listening level was 2 dB above the DSL v4.1 prescribed setting.
Preferred Listening Levels in Children

PLL / NAL Comparison

Recommended Listening Level (dB) vs Preferred Listening Level (dB)

NAL-RP/NL1
Preferred Listening Levels in Children

PLL / NAL Comparison

• On average, the NAL prescribed setting was 11 dB lower than the subject’s PLLs

• The PLLs were within 5 dB of the NAL prescribed settings for 9% of the subjects
Adult/Child Preferred Listening Levels

Scollie, Cornelisse, Seewald, Moodie, Bagatto, Laurnagaray, Beaulac & Pumford (2005)
DSL is just about right!
A New Wrinkle
A new wrinkle

Thresholds in dB HL or dB nHL

“Quick Fit” in Manufacturer’s Software
A Question . . .

How similar are proprietary algorithms for fitting infants and young children?
A Study

• Instruments from five “pediatric friendly” manufacturers programmed using the proprietary algorithm.

• Nine different audiograms were used (mild through profound).

• Average RECD for a 6 month old applied.
A Study

- Simulated real-ear hearing instrument performance was measured for:
 - soft speech
 - average speech
 - loud speech
 - output limiting
Sample Findings

Frequency (Hz)

Hearing Threshold Level (dB)
Sample Findings: Average Speech Input

21 dB Difference
Sample Findings: Lound Speech Input

26 dB Difference
Sample Findings: Output Limiting Levels

- 103 dB SPL
- 133 dB SPL
Sample Findings

Frequency (Hz)

Hearing Threshold Level (dB)

X X X X X X X
Sample Findings: Output Limiting Levels

![Graph showing output limiting levels for different series.](image-url)

- **Series1**: 144 dB
- **Series2**: 120 dB

The graph illustrates the variation in output dB SPL across different frequencies for Series 1 to Series 5.
Connect coupler and instrument to coupler microphone. Select one of REAR 1 through REAR 4.
The Fitting Process

ASSESSMENT

SELECTION AND FITTING

VERIFICATION

VALIDATION
What we want to know

That we have achieved a good match between the amplification characteristics of hearing instruments and the auditory characteristics of infants and children so that the use of residual auditory capacity can be maximized.
Verification: Measurement Options

I. Behavioral
 Sound Field Aided Thresholds

II. Electroacoustic
 A. Real-ear Measures
 1. REIR
 2. REAR x Input Level
 3. RESR
 B. Simulated Real-ear (coupler-based + RECD)
 1. Predicted REAR x Input Level
 2. Predicted RESR
Verification: Measurement Options

Behavioral Measures

Electroacoustic Measures

Stone and Adam (1986)
Verification: Measurement Options

I. Behavioral
 Sound Field Aided Thresholds

II. Electroacoustic
 A. Real-ear Measures
 1. REIR
 2. REAR x Input Level
 3. RESR

 B. Simulated Real-ear (coupler-based + RECD)
 1. Simulated REAR x Input Level
 2. Simulated RESR
How are RECDs used??

In Hearing Instrument Fitting

To predict real-ear hearing aid performance

HEARING AID PERFORMANCE

CUSTOMIZED TRANSFORM

REAL-EAR

2cc COUPLER

INFANT’S RECD

MICROPHONE LOCATION EFFECTS
Connect coupler and instrument to coupler microphone. Select one of REAR 1 through REAR 4.
Connect coupler and instrument to coupler microphone. Select one of REAR 1 through REAR 4.
Connect coupler and instrument to coupler microphone. Select one of REAR 1 through REAR 4.
Connect coupler and instrument to coupler microphone. Select one of REAR 1 through REAR 4.
Connect coupler and instrument to coupler microphone. Select one of REAR 1 through REAR 4.
The Electroacoustic-based Approach to Fitting (from Erber 1973)

- Child’s Level of Discomfort
- Maximum HA Output
- Amplified Speech
- Child’s Thresholds
- Conversational Speech
- Normal Hearing

Decibels Sound Pressure Level

- 140
- 120
- 100
- 80
- 60
- 40
- 20
- 0
How well does this work???

Validation Studies
Repeatability of RECD Measures:

- $N = 90$ infants/children & 10 adults
- RECD measures obtained twice using the DSL method recommended protocol
Repeatability of RECD measures as a function of age group

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Mean Diff. (1st - 2nd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5 months</td>
<td>1.6</td>
</tr>
<tr>
<td>6 - 12 months</td>
<td>1.5</td>
</tr>
<tr>
<td>13 - 18 months</td>
<td>1.6</td>
</tr>
<tr>
<td>19 - 24 months</td>
<td>1.7</td>
</tr>
<tr>
<td>25 - 36 months</td>
<td>1.9</td>
</tr>
<tr>
<td>Adult</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Predictive Validity of a Procedure for Pediatric Hearing Instrument Fitting

Seewald, Moodie, Sinclair & Scollie

American Journal of Audiology (1999)
Predictive Validity of RECD Measures:

- $\text{N} = 14$ children, Ages: 3 -12 years
- **MEASURES:**
 - RECD measures
 - Coupler measures (2cc gain / SSPL)
 - Real-ear measures (REAG / RESR)
- Predicted values compared to direct measures
Predictive Validity of RECD Measures:

95% Confidence Intervals

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 2.9 dB</td>
<td>2.4</td>
<td>2.4</td>
<td>1.7</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

± 2.3 dB for 95% of subjects across frequencies
How well does it work???

Conclusion:

It is possible to derive accurate predictions of real-ear hearing aid performance on the basis of RECD measures.
Thus,

When this approach to hearing instrument fitting is taken with infants/ children, it is not necessary to try to measure an aided audiogram or make conventional probe microphone measures in the initial stages.
The “Coupler Approach”
(Simulated Real-ear)

Relative Advantages

• Does not require a behavioral response
• Provide an accurate estimate of the maximum real-ear SPL
• Predicted REARs are measured with speech-like inputs
The “Coupler Approach” (Simulated Real-ear)

Relative Advantages

• The variability associated with sound field probe microphone measures with children is eliminated.

• All electroacoustic response shaping can be performed under the controlled acoustic conditions of the hearing instrument test box.
The “Coupler Approach”
(Simulated Real-ear)

Relative Advantages

• This approach significantly reduces the amount of measurement time and cooperation required with each child.
Some Limitations

• This approach to verification does not quantify auditory performance with amplification. . . it is only predictive.

• It does require one probe microphone measurement.

• Care must be taken in selecting test signals
Some Current Issues in Verification

0101010010101001010101001
01010010101011010010101
01001011101010010100101001010
01011010100010100101010001010
0101101010101001010010101001001
01011010100010100101010001010
1010100101011101011101010010101
Questions, Questions, Questions . . .

- Is it possible to verify the electroacoustic performance of digital instruments - And, if so, how should we do this ??

- Can electroacoustic measurements using clinical test signals be used to predict the levels of amplified speech for digital instruments?

- If we can’t verify electroacoustic performance, should we be fitting digital instruments to infants?
The Problem . . .

• Many DSP instruments are designed to detect modulations to decide if they are receiving ‘speech’ or ‘noise’.

• Some of our common clinical test signals (eg. pure tones) do not modulate and thus are processed as “noise”.
What you should know . .

• All digital instruments do not implement noise reduction / speech enhancement strategies.

• For most that do, it is possible to turn off this feature for electroacoustic verification.

• If the NR/SE processing cannot be turned off, special care must be taken in test signal selection (eg. Modulated signals)
General Guidelines

For verification of digital hearing instruments:

• Turn the noise reduction / speech enhancement feature off.
• Use speech-weighted test signals.
• Use modulated signals.
• Study performance for low, average and high-level “speech” inputs - (55, 65, 75 dB SPL).
Connect coupler and instrument to coupler microphone. Select one of REAR 1 through REAR 4.
Muchas gracias !